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Overview

 Neuromorphic computing  Artificial Deep Neural Networks
– Training of deep neural networks
– Processing of synaptic weights 
– Need for non Von-Neumann computing architectures

 Analog synaptic weight storage and processing in crossbar arrays
– Electric crossbar arrays
– Optical crossbar array using holographic storage and signal processing

 Integrated optical crossbar array in Silicon Photonics
– Optical components
– Holographic storage medium

 Summary & Outlook



Neuromorphic computing = Brain inspired computing

 http://biomedicalengineering.yolasite.com/neurons.php

 Signaling between neurons: Spikes, spike trains

 Neuron activation: “Leaky Integrate and Fire”

 Learning: Adjustment of the synaptic weights
– Spike Timing Dependent Plasticity: “Neurons that 

fire together wire together”

Neuron level:Brain at neural network level:

Motivation: The outstanding features of the (human) brain:

 Power efficiency  (human brain consumes ~ 20 W)

 Remarkable pattern recognition performance: Recognition of (subtle) patterns buried in noise

http://www.sciencephoto.com/dennis-kunkel-microscopy-collection

 Human brain: ~ 100 billions neurons

 Each neuron is connected to 1’000 – 10’000 other 
neurons by synapses

 Signal transmitted by a synapse is adjustable: 
“synaptic weight”



Brain inspired computing:

 Better fit to standard hardware:
– Feed-forward sequential processing
– Information encoded in signal amplitude
– Multiply and Accumulate for weighted connections
– Neuron activation: (soft) threshold function

 Training: Backpropagation Algorithm

Deep Artificial Neural Network:Brain-like Neural network:

Simplify 

& Adapt

“Cat”

“Dog”

“Mouse”

 Omni-directional signal flow

 A-synchronous pulse signals

 Information encoded in signal timing

 Difficult to implement efficiently on 
standard computer hardware
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Artificial Neural Network: Computations

Components:

 Layers of neurons

 Synaptic interconnections

Mathematical operations:

 Thick lines: signal vectors

 𝑊: Synaptic weight matrix

 𝜎: per-element neural activation 
function (sigmoid) x 𝑊1 𝜎 𝑊2 𝜎 y
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ANN Training: Backpropagation algorithm

x 𝑊1 𝜎 𝑊2 𝜎 y
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Training case x with target response t:

1. Forward Propagate Response y 

2. Determine output error:

3. Backward Propagate: Find neuron input 
signals that contributed most to the error

4. Find weights that were active, and that 
contributed to the error. Adjust weights to 
reduce error: Δ𝑤𝑖𝑗 = −𝜂 𝛿𝑖 𝑥𝑗

5. Repeat for many, many different testcases

(𝒚 − 𝒕)2 E



Efficient training of Deep Artificial Neural Networks:

 Training by Backpropagation Method:
– Forward Propagation: 𝑊1,2..

– Backward Propagation:  𝑊2,3..
𝑇

– Weight Update:              ∆𝑊1,2..

 Many large matrix operations

– Scale ∝ 𝑁2

GPU

Weight matrix processing has limited efficiency on 
standard Von Neumann systems:

– (Mostly) Serial processing
– Low computation to IO ratio Memory 

bottleneck

 To accelerate weight matrix processing: Borrow 
some concepts from the brain:

– Analog signal processing
– Fully parallel processing
– Tight integration of processing and memory 

Neurons/layer

 G. W. Burr et al., “Tech. Dig. - Int. Electron Devices Meet. IEDM, vol. 2016–Febru, no. 408, p. 4.4.1-4.4.4, 2016.

 T. Gokmen and Y. Vlasov, Front. Neurosci., vol. 10, no. JUL, pp. 1–13, 2016.

Crossbar arrays

 Large training datasets: Thousands of training cases



Weight 
update:

Analog crossbar arrays:

Electrical 
crossbar array: 
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Backward 
propagation:

Challenge: Tunable weights

 Update must be proportional to signals on 
row and column

– Symmetric increase and decrease of 
weight

– ~1000 analog levels required

 Difficult to find material systems that meet 
these requirements
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Δ𝑤𝑖𝑗 = −𝜂 𝛿𝑖 𝑥𝑗



Optical crossbar arrays: Holographic storage and signal processing

Optical intensity

Charge separation

Electrical field

Refractive index

Position

Interference pattern: Stored diffraction grating:Photorefractive effect:

Weight Storage: 

Synaptic weights are stored as refractive index gratings in a photorefractive material:

 Grating are written by two interfering optical beams

 Photorefractive effect: Optically active electron traps + Pockels effect  refractive index grating

 Linear and symmetric process

Source 1

Destination 1

Photorefractive

crystal

W

 Cornelia Denz, Optical Neural Networks, 1998.



Optical crossbar arrays: Holographic storage and signal processing

Signal 1

W∙S1

Source 2

Diffraction grating readout: Write a second grating:

Destination 1

S1

S2

W1∙S1+W2∙S2

Multiply & accumulate on two gratings:

Synaptic weight processing:

Synaptic weight gratings diffract light from optical input beams to optical output beams

 Different input/output signals are encoded by different beam angles in the crystal 

 There is a unique grating for every input-output beam combination

 Optical signaling: amplitude & phase  Bipolar signals and weights

W2

Photorefractive

crystal

From source 

neurons:

To destination 

neuron:



Optical crossbar arrays: Weight processing operations

 Add lenses to shape the optical beams:
– Arrays of point sources  collimated beams under different angles  arrays of point images 
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 All weight processing operations for backpropagation supported

Forward propagation: Backward propagation:Weight update:



Optical crossbar arrays: Integrated Solution

Concept demonstrated in 3D free-space optics

 In the 90s (Hughes Research Laboratories)

 Backpropagation training of ANNs shown

 Large setup, slow electro-optics, stability issues

Our approach: Miniaturize using Integrated Optics

 Electro-optic conversion and beam shaping optics on 
a Silicon-Photonics chip

 Memory: Photorefractive thin film on silicon

 Yuri Owechko and Bernard H. Soffer, "Holographic neurocomputer 

utilizing laser diode light source“, 1995



Photonic weight processing unit: Building blocks

Beam shaping optics:

 Converts between point 
sources and plane waves

– Parabolic collimating 
mirrors 

– Curved/tilted focal planes 
for aberration correction.

layout Simulated transmission

Measured transmission:

Si-Photonics hardware:

in1

in16 out1

out16



Photonic weight processing unit: Building blocks
Transmitter array: 

 Encodes input vectors onto arrays of coherent optical sources.

 Control of amplitude and phase

 Based on standard Si-Photonics components

Laser in 8 outputs

8 outputs

Si-Photonics hardware:

Receiver array: 

 Detects amplitude and phase of output signals

 Standard Si-Photonics detector array



Two-wave mixing in bulk GaAs crystal ≈ single synapse:

Photonic weight processing unit: Building blocks

Photorefractive interaction region: 

 Stores synaptic weights as refractive index gratings

 Photorefractive material: Semi-Insulating GaAs
– Matches Si-Photonics wavelength range
– Compatible with III-V on Silicon processes
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Bias – Low asymmetry
– High dynamic range
– Bipolar weight storage
– To be confirmed in thin film



Photonic weight processing unit: Building blocks
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Integration of the photorefractive layer: 

 Bonding technology as demonstrated 
for other III-V on Si projects: 

– Gain layers for integrated light 
sources

 Oxide bonding to Silicon-photonics 
stack

4” Si Photonics wafer

Bonded III-V layer stack

 Vertical directional coupling for efficient coupling of light 
between Si-photonic and GaAs layers

Si slab waveguide

GaAs slab waveguide

ca. 20 mmAreas of vertical 

directional coupling

Vertical directional coupling

 M. Seifried et al., "Monolithically Integrated CMOS-Compatible III–V on Silicon Lasers“ doi: 10.1109/JSTQE.2018.2832654.



Summary and Outlook

 Optical holographic storage and signal processing:
– Provides all necessary operations for 

accelerating training and evaluation of Deep 
Artificial Neural Networks

 Integrated photonic synaptic weight processor:
– Silicon Photonics for electro-optical conversion 

and beam shaping
– GaAs photorefractive layer for holographic 

weight storage and processing

 First step: Demonstration of principle 
– 8 x 8 matrix using in-house facilities
– BRNC cleanroom @ IBM - Zurich

 Next: Large scale demonstrator
– Si-Photonics foundry
– III-V integration support required
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